Using Computational Resources at W&M/VIMS

" ®

Process control in the shell

Shell scripting

Types of calculations — serial vsi'shared memory vs. dist. memory

A few batch job examples

Eric J. Walter
Director of Research
Computing
February 6th, 2025

Process Control controlkey
S

Sometimes, you will run a command and it takes too long / you want to kill it for some reason: *c
Sometimes (interactive job session) you want to run a calculation in the "background": &, jobs, kill

1 [bora] find . -name hello &
[1] 14449

2 [bora] jobs
[1]+ Running find . -name hello &

3 [bora] kill %1

4 [bora]
[1]+ Terminated find . -name hello

& - puts the calculation in the background
jobs - lists current running "jobs"

kill - kills the job (%1)

~c —cancel

~z — background

Occasionally, you must use "kill -9" (always try without -9 first!)

Process Control — cont. 2

You can also move a background job to the foreground and vice/versa:

1 [bora] find . -name hello
NZ
[1]+ Stopped . -name hello

2 [bora] bg
[1]+ find . -name hello &

3 [bora] jobs
[1]+ Running . -hame hello &

4 [bora] fg %1
find . -name hello
e

Process Control — cont. 3

"job" control with %n . Any other shell need to use

ps - lists the current processes

ps -ef (all proceses)
ps —-fu ewalter (processes for ewalter)

Can kill using process id:

1 [bora] ps -fu ewalter

UID PID PPID C STIME TTY TIME CMD

ewalter 20926 35637 23 19:46 pts/0 00:00:00 find . -name hello
ewalter 21014 35637 © 19:46 pts/0 00:00:00 ps -fu ewalter

ewalter 35636 35633 © 19:10 ? 00:00:00 sshd: ewalter@pts/©
ewalter 35637 35636 © 19:10 pts/0 00:00:00 -bash

2 [bora] kill 20926

top -shows you the current running processes on a computer interactively

2 ewalter@gto2 $top .
: ’ Jetop top shows you the statuses of the processes running on
- 09:58:42 up 107 days, 17 min, 1 user, load av e: 63.13, 62.9

1666 tot 11 ing, 1662 sleeping, ; 0 zombie the Server.
S 0.0 ni, 95.4 id, 1.5 wa 1.0 hi, 0.3 s]

364935.6 free, 38384.2 d, 115599.0 buff
4096.0 tm,dl, 3947.2 free, .8 used. 476883.0 avail

PID - process id
- COTEND USER - who owns process

3 python

> byehon VIRT — How much memory reserved for process

: :{j}ﬂ::{j:] RES - How much memory the process is currently using
python
Vthnn

5.99 185852
3316
132280

o Q0
o o

co
(0]

303428
> JOO."‘-} 2

-:r:- OO

S - status column
8) R - Running

o1 :i:ﬂ?:’?:? S —Sleeping
. Pythor D - Disk activity

I -idle

Z - /Zombie

H1104O
911051
911062
911064
911069 alza : 3
911077 calza 2€C 0 8 40 3018
: 173 10596
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

CO CO Co Q0

~

0

o O

0

=)

%CPU - percent of one core itis using (can be > 100%)
%MEM - percent of the total system MEM in use

TIME - how much CPU time process has used
COMMAND - name of executable

S
R
S
)
S
R
S
S
S
.
S
)
S
S
S
S
I
I
I
I
I
I
I
I
I
S
)
I
S
S

idle inject/o Can use top to see what is happening with your job

Shell Scripting

 Shell scripting is essential to utilize Linux environment efficiently
* tcsh and bash are two different shell flavors

 AlWlHPC users defaultto tcsh

 #-commentcharacter

e #!-NOTcomment if on first line

 Linuxis case sensitive

Change permissions to executable

.is not in your PATH, must add it explicitly

Shell Scripting — cont.

Say you have afile of all the inputs you want to run:

Say you run the job like this:

* (backtick) means "the result of this command"

. /runjobs will run all parameters in joblist file

Main tcsh constructs:

foreach loop

#!/bin/tcsh
foreach i (" cat joblist’)

echo $i
./Ja.out -i $i
end

If-then-else

#!/bin/tcsh
set scen = b
if ($scen == a) then

echo $scen
else

echo "wrong value”
endif

Shell Scripting — cont. 2

while loop

#!/bin/tcsh
set i =1
while ($i < 5)

echo "i is $i"
@ i++
end

switch/case statement

switch ($myvar)

case 'foo':
./foo.csh
breaksw

case 'bar':
./bar.csh

breaksw
default:

echo $usage

breaksw

endsw

Even though you have a tcsh environment, you can still use bash shell scripts
Bash is considered more powerful for scripting / sometimes easier

Serial vs. Shared Memory vs. Distributed Memory

bo01

bo01

bo01

Two bora nodes

bo02

bo02

bo02

How parallel the calculation can run is application dependent
How many cores a parallel application can use efficiently also varies
Try test calculations if not sure.

serial - only one core used

shared memory parallel -
one node, multi-core

distributed parallel -
multi-node, multi-core

Job Memory Requirements

sacct- SLURM command to look at past jobs

r Nndelet Eldp ed, CPUTlMH,otde,AllD 90" -S 1/27/7 -X
lodeLlst - . CPUT1ime State AllocTRES

7075 02-04T18:34:€
26 ewalter@bora 158

Remember man command:

seff- SLURM command to look efficiency of past job oo [0 SEEC

Slurm Commands

[226 ewalter@bora]$seff 17383

Job ID: 17383 sacct ‘ 1ting data for
Cluster: bora g log or Slur -
User/Group: ewalter/hpc

State: CANCELLED (exit code 0)

Nodes: 3

Cores per N nformation for invoked with Slurm

all jobs and job steps in the Slurm job acco

of 01:52:40 core-walltime I .
PR:11:16 e C 1S jo Inting da in the job ac 1ting log file
) ' rm . ‘ C o . The sacct manc

efault. You

fn
1% the fields to be shown.

Memory Effic1ency: 30.00% of 61.5: output with the'use
[EE? ewalter@bora S C st of a prima entry for the job whole as well as entries for

Jupyter Notebook / Interactive job

https://www.wm.edu/offices/it/services/researchcomputing/using/http/

Jupyter Notebook on HPC cluster:

Install jupyter notebook

>iclone/ho valte L/ sk yter/runtime/jpserver-882779-open.html
and pe '

1 [bora] pip install notebook

Will warn you that executable is installed in .local/bin folder and

® 127.0.0.1:8888/lab

that this is not in your PATH. hefro.. W ProFoctballpl.. [personal I WamiT/HPC B osTich

1 [bora] salloc -N1 -nl1 -t 1:00:00 LI B

1 [bo@3] cd .local/bin S Ntebook

2 [bo@3] ./jupyter-notebook --no-browser --ip=* . a a
Need to tunnel http traffic from node to your local machine o oy :
(to use local web browser) - B consol

_ b e [t A

1 [my laptop] ssh -NL 8888:b003:8888 ewalter@bora.sciclone.wm.edu e oy
This command will hang until you kill it (“c) i .
Once both the tunnel and jupyter-notebook are started, you can put: e =
http://127.0.0.1:8888/tree?token=497971489... B =

into your local web browser

Change tree to lab in URL to get modern notebook

Batch job : Python

https://www.wm.edu/offices/it/services/researchcomputing/using/software/python/
Python widely used on HPC systems.

For simple things, you can simply use OS/built-in python
However, we have two modules that you should consider if building a python environment:

Should launch from scratch filesystem, not home directory: pwd = /sciclone/scr10/ewalter/job45

Python/3.12.7 - standard distribution of v3.12.7 from Python.org
miniforge3/24.9.2-0 - conda/mamba tools for installation

24 [bora] cat run
#!/bin/tcsh

#SBATCH --job-name=get_stl2
#SBATCH --nodes=1 --ntasks=1 Can use:

#SBATCH --time=1:00:00 python module to build virtual environment (venv)
#SBATCH --gpus=1

miniforge3 to build conda environments

module load miniforge3 Load miniforge3 module
conda activate testenv Activate 'testenv' conda environment
which python which python (will return path of the python executable)

foreach i (“cat list’) foreach loop 26 [bora] cat list
echo $1 > INPUT N “xxx' means evaluate xxx Y

- python run.py >& out.$1 Run the run.py script (takes INPUT as a parameter)

end Also send the output of each run to out.<parameter>

Al

125 [bora] l Submit job with:
5 1 [bora] sbatch run

Batch job : Parallel/MPI

srun instead of mpiexec, mpirun etc.

pwd = /sciclone/home/ewalter ; sending outputs to /sciclone/scr10/ewalter/myjoboutput

ckload —used to check that there are no rouge processes on nodes (useful if doing performance tests)
If the test fails, should send email to hpc-help@wm.edu to clean up node/nodes

#!/bin/tcsh "hash bang" which shell syntax to run (here tcsh)
#SBATCH --job-name=femto Job Name

#SBATCH --nodes=4 --ntasks-per-node 32 # nodes , # cores per node

#SBATCH --time=1-0 walltime (1 day)

module load netcdf-c/intel-2024.0/4.9.2_intelmpi Load needed software modules
module load netcdf-fortran/intel-2024.0/4.6.1_intelmpi

ckload 0.05 Check load : allload on all my servers should be <0.05

srun myjob.exe >& /sciclone/scr10/ewalter/myjoboutput/outputs

Run the parallel program with srun (passes topology)
Also redirect stdout, stderr to a file named "output” in

mailto:hpc-help@wm.edu

USING HPC

Prerequisites

Logging in to HPC systems
Environment modules

Files & Filesystems

Running HPC jobs with
SLURM

Compiling & MPI software
Tutorials
Software

Tunneling HTTP for Jupyter

O X 0O
in B3

HPC webpage:
HPC ticket system

Getting Help

Departments & Offices / ... / Using / Prerequisites

RC/HPC website
HPC Prerequisites

William & Mary's HPC clusters run on a mixture of Red Hat Enterprise Linux and its derivative CentOS, so you will need
basic Unix/Linux knowledge to use the university's HPC systems. If you are unfamiliar with the Unix/Linux command-Lline,

please avail yourself of one or more of the following resources:

s Unix—the Bare Minimum

» UNIX / Linux Tutorial for Beginners

Writing tcsh shell scripts

* The Linux command line for beginners (Ubuntu focused)

W&M users also have access to many relevant technical e-books through Swem Library, including Unix Power Tools (also
available in print), Learning the Unix Operating System (also available in print), Using csh & tcsh, Linux Pocket Guide:

Essential Commands, and Unix in a Nutshell.

Text editors

As part of your command-line proficiency, you will want to be familiar with some kind of "plain text" editor. Every W&M
HPC login server has at least vim, nano, and emacs, of which nano is the easiest for a beginner (but ultimately least
powerful). Alternatively, some users prefer to do their editing on their desktop or laptop computers (with the text editor or
IDE of their choice), and then use a file transfer utility such as FileZilla, PuTTY, WinSCP, Fetch, rsync, or sftp to copy files to

and from the clusters.

https://www.wm.edu/it/rc
mail: hpc-help@wm.edu

https://www.wm.edu/it/rc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

