
Using Computational Resources at W&M/VIMS

• Process control in the shell

• Shell scripting

• Types of calculations – serial vs. shared memory vs. dist. memory

• A few batch job examples

Eric J. Walter
Director of Research

Computing
February 6th, 2025

Process Control

Sometimes, you will run a command and it takes too long / you want to kill it for some reason: ^c
Sometimes (interactive job session) you want to run a calculation in the "background": &, jobs, kill

Occasionally, you must use "kill –9" (always try without –9 first!)

control key

& - puts the calculation in the background
jobs – lists current running "jobs"
kill – kills the job (%1)
^c – cancel
^z – background

1 [bora] find . -name hello &
[1] 14449

2 [bora] jobs
[1]+ Running find . -name hello &

3 [bora] kill %1

4 [bora]
[1]+ Terminated find . -name hello

Process Control – cont. 2

1 [bora] find . -name hello
^z ​
[1]+ Stopped find . -name hello

2 [bora] bg
[1]+ find . -name hello &

3 [bora] jobs​
[1]+ Running find . -name hello &

4 [bora] fg ​%1
find . -name hello
^c ​

You can also move a background job to the foreground and vice/versa:

Process Control – cont. 3

ps – lists the current processes

ps –ef (all proceses)​
ps –fu ewalter (processes for ewalter)​

"job" control with %n only works for the shell that launched the process. Any other shell need to use ps.

1 [bora] ps -fu ewalter
UID PID PPID C STIME TTY TIME CMD
ewalter 20926 35637 23 19:46 pts/0 00:00:00 find . -name hello
ewalter 21014 35637 0 19:46 pts/0 00:00:00 ps -fu ewalter
ewalter 35636 35633 0 19:10 ? 00:00:00 sshd: ewalter@pts/0
ewalter 35637 35636 0 19:10 pts/0 00:00:00 -bash​​

2 [bora] kill 20926​

Can kill using process id:

top – shows you the current running processes on a computer interactively

Top
top shows you the statuses of the processes running on
the server.

PID – process id
USER – who owns process
VIRT – How much memory reserved for process
RES – How much memory the process is currently using

S – status column
R – Running
S – Sleeping
D – Disk activity
I – idle
Z – Zombie

%CPU – percent of one core it is using (can be > 100%)
%MEM – percent of the total system MEM in use
TIME - how much CPU time process has used
COMMAND – name of executable

Can use top to see what is happening with your job

Shell Scripting
• Shell scripting is essential to utilize Linux environment efficiently
• tcsh and bash are two different shell flavors
• All HPC users default to tcsh
• # - comment character
• #! - NOT comment if on first line
• Linux is case sensitive

#!/bin/tcsh
comment : #! Is a script shell interpreter ("do this with tcsh syntax")
foreach i (1 2 3 4 5)
 echo $i
end

[68 ewalter@bora ~]$ chmod u+x test.csh

[69 ewalter@bora ~]$./test.csh
1
2
3
4
5​

Change permissions to executable

. is not in your PATH, must add it explicitly

Shell Scripting – cont.

1 [bora] ./a.out -i 1.45​

2 [bora] cat runjobs
#!/bin/tcsh​
foreach i (`cat joblist`)​
 echo $i
 ./a.out -i $i
end​

3 [bora] chmod u+x runjobs
4 [bora] ./runjobs

` (backtick) means "the result of this command"

./runjobs will run all parameters in joblist file

1 [bora] cat joblist
1.45​
1.44​
1.40​
1.33​
1.10​

Say you have a file of all the inputs you want to run:

Say you run the job like this:

Shell Scripting – cont. 2
Main tcsh constructs:

#!/bin/tcsh​
set scen = b​
if ($scen == a) then​
 echo $scen
else​
 echo "wrong value"​
endif​

#!/bin/tcsh​
set i = 1​
while ($i < 5)​
 echo "i is $i"​
 @ i++​

end

#!/bin/tcsh​
foreach i (`cat joblist`)​
 echo $i
 ./a.out -i $i
end​

foreach loop

If-then-else

while loop

switch ($myvar)
case 'foo':
 ./foo.csh
 breaksw
case 'bar':
 ./bar.csh
 breaksw
default:
 echo $usage
 breaksw
endsw

switch/case statement

Even though you have a tcsh environment, you can still use bash shell scripts
Bash is considered more powerful for scripting / sometimes easier

Serial vs. Shared Memory vs. Distributed Memory

Two bora nodes

serial – only one core used

shared memory parallel –
one node, multi-core

distributed parallel –
multi-node, multi-core

bo01

bo01

bo01

bo02

bo02

bo02

How parallel the calculation can run is application dependent
How many cores a parallel application can use efficiently also varies
Try test calculations if not sure.

Job Memory Requirements
sacct - SLURM command to look at past jobs

seff - SLURM command to look efficiency of past job

Remember man command:
>> man sacct

Jupyter Notebook / Interactive job

Jupyter Notebook on HPC cluster:

Install jupyter notebook

1 [bora] pip install notebook

Will warn you that executable is installed in .local/bin folder and
that this is not in your PATH.

1 [bora] salloc –N1 –n1 –t 1:00:00
1 [bo03] cd .local/bin
2 [bo03] ./jupyter-notebook --no-browser --ip=*

https://www.wm.edu/offices/it/services/researchcomputing/using/http/

Need to tunnel http traffic from node to your local machine
(to use local web browser)

1 [my laptop] ssh -NL 8888:bo03:8888 ewalter@bora.sciclone.wm.edu
This command will hang until you kill it (^c)
Once both the tunnel and jupyter-notebook are started, you can put:
http://127.0.0.1:8888/tree?token=49797149...
into your local web browser

Change tree to lab in URL to get modern notebook

Batch job : Python

Python widely used on HPC systems.

For simple things, you can simply use OS/built-in python
However, we have two modules that you should consider if building a python environment:

https://www.wm.edu/offices/it/services/researchcomputing/using/software/python/

Python/3.12.7 - standard distribution of v3.12.7 from Python.org
miniforge3/24.9.2-0 - conda/mamba tools for installation

Can use:
python module to build virtual environment (venv)
miniforge3 to build conda environments
Load miniforge3 module
Activate 'testenv' conda environment
which python (will return path of the python executable)

foreach loop
`xxx` means evaluate xxx
Run the run.py script (takes INPUT as a parameter)
Also send the output of each run to out.<parameter>

Submit job with:
1 [bora] sbatch run

Should launch from scratch filesystem, not home directory: pwd = /sciclone/scr10/ewalter/job45

Batch job : Parallel/MPI
srun instead of mpiexec, mpirun etc.
pwd = /sciclone/home/ewalter ; sending outputs to /sciclone/scr10/ewalter/myjoboutput
ckload – used to check that there are no rouge processes on nodes (useful if doing performance tests)
If the test fails, should send email to hpc-help@wm.edu to clean up node/nodes

#!/bin/tcsh
#SBATCH --job-name=femto
#SBATCH --nodes=4 --ntasks-per-node 32
#SBATCH --time=1-0

module load netcdf-c/intel-2024.0/4.9.2_intelmpi
module load netcdf-fortran/intel-2024.0/4.6.1_intelmpi

ckload 0.05

srun myjob.exe >& /sciclone/scr10/ewalter/myjoboutput/outputs

"hash bang" which shell syntax to run (here tcsh)
Job Name
nodes , # cores per node
walltime (1 day)

Load needed software modules

Check load : all load on all my servers should be <0.05

Run the parallel program with srun (passes topology)
Also redirect stdout, stderr to a file named "output" in

mailto:hpc-help@wm.edu

Getting Help

HPC webpage: https://www.wm.edu/it/rc
HPC ticket system mail: hpc-help@wm.edu

RC/HPC website

https://www.wm.edu/it/rc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

